Immobilization of lysozyme proteins on a hierarchical zeolitic imidazolate framework (ZIF-8).
نویسندگان
چکیده
A hierarchical zeolitic imidazolate framework-8 (micro/meso-ZIF-8) was fabricated by using cetyltrimethylammonium bromide as a structure-controlling agent and l-histidine as co-templates. Compared to the conventional microporous ZIF-8 (micro-ZIF-8), the hierarchical porous structure of micro/meso-ZIF-8 contains micropores and maximum mesopores of around 35.6 nm. The as-prepared hierarchical micro/meso-ZIF-8 featured a large surface area and superior spontaneous adsorption activity than micro-ZIF-8 towards lysozyme (LZM), bovine hemoglobin (BHb) and bovine serum albumin (BSA), and the adsorption capacity increased with the decreasing of the protein size due to the molecule cutoff effects. The maximum adsorption capacity of LZM on micro/meso-ZIF-8 was higher than most of the reported results under similar adsorption conditions. The analyses of adsorption kinetics and thermodynamics implied that the adsorption mechanism mainly involved physical adsorption. Moreover, the micro/meso-ZIF-8 showed good thermal stability against temperature and excellent regeneration ability in the recycling adsorption experiments. This work proposed herein opens a broad application prospect of hierarchical MOFs in biological molecule separation, immobilization and enrichment.
منابع مشابه
Porous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8 (ZIF-8)
Metal-organic frameworks (MOFs) are emerging material class for the past few years due to its tailorability characteristics for various applications. However, the research and development (R&D) of MOFs is still scarce for fuel cell system. This may be due to the several difficulties faced in selecting a good MOFs-based electrolyte, which consequently affects both proton conduction and methanol ...
متن کاملAmorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling.
We report the rapid amorphization of the prototypical substituted zeolitic imidazolate framework, ZIF-8, by ball-milling. The resultant amorphous ZIF-8 (a(m)ZIF-8) possesses a continuous random network (CRN) topology with a higher density and a lower porosity than its crystalline counterpart. A decrease in thermal stability upon amorphization is also evident.
متن کاملStabilization of graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolate framework nanocrystals for photoluminescence tuning.
Luminescent graphene quantum dots (GQDs) are encapsulated and stabilized in Zeolitic Imidazolate Framework (ZIF-8) nanocrystals. The GQDs are well confined due to the adsorption on the growing face of the ZIF-8 nanocrystals and have a profound effect on the shape of the nanocrystals from rhombic dodecahedron to spherical. Stabilizing GQDs inside the ZIF-8 nanocrystals results in tailoring of th...
متن کاملOpening ZIF-8: a catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers.
A zeolitic imidazolate framework material of SOD topology possessing primarily unsubstituted imidazolate (im) linkers has been synthesized via solvent-assisted linker exchange (SALE) of ZIF-8. The structure of the new material, SALEM-2, has been confirmed through (1)H NMR and powder and single-crystal X-ray diffraction. SALEM-2 is the first example of a porous Zn(im)(2) ZIF possessing a truly z...
متن کاملNMR and X-ray Study Revealing the Rigidity of Zeolitic Imidazolate Frameworks
NMR relaxation studies and spectroscopic measurements of zeolitic imidazolate framework-8 (ZIF-8) are reported. The dominant nuclear spin−lattice relaxation (T1) mechanism for ZIF-8 in air arises from atmospheric paramagnetic molecular oxygen. The C T1 measurements indicate that the oxygen interacts primarily with the imidazolate ring rather than the methyl substituent. Similar relaxation behav...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 46 7 شماره
صفحات -
تاریخ انتشار 2017